Object Detection on Jetson (Ultralytics YOLO)
This section demonstrates object detection on NVIDIA Jetson using Ultralytics YOLO. It covers detection on images, videos, and real-time camera streams with Jetson performance optimization.
1. Enable Optimal Jetson Performance
Before running inference, configure the Jetson board for maximum performance.
Enable MAX Power Mode
sudo nvpmodel -m 2
Enable Jetson Clocks
sudo jetson_clocks
2. Object Detection on Images
Enter Demo Directory
cd ~/ultralytics/ultralytics/yahboom_demo
Run Image Detection Script
python3 01.detection_image.py
Detection results are saved to:
~/ultralytics/ultralytics/output/
Sample Code (Image Detection)
from ultralytics import YOLO
model = YOLO("yolo11n.pt")
results = model("assets/bus.jpg")
for r in results:
r.show()
r.save(filename="output/bus_output.jpg")
3. Object Detection on Videos
Run Video Detection Script
python3 01.detection_video.py
Output video location:
~/ultralytics/ultralytics/output/
Sample Code (Video Detection)
import cv2
from ultralytics import YOLO
model = YOLO("yolo11n.pt")
cap = cv2.VideoCapture("videos/people_animals.mp4")
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
out = cv2.VideoWriter(
"output/people_animals_output.mp4",
cv2.VideoWriter_fourcc(*"mp4v"),
fps,
(width, height)
)
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
results = model(frame)
annotated = results[0].plot()
out.write(annotated)
cap.release()
out.release()
4. Real-Time Object Detection
USB Camera
python3 02.detection_usb_camera.py
CSI Camera
python3 03.detection_csi_camera.py
5. Best Practices
- Use Nano models (yolo11n) for real-time inference
- Prefer CSI cameras for lower latency
- Always enable MAX power mode
- Export models to TensorRT for production
Maintained by HemiHex for Jetson-based advanced vision workflows.