Skip to main content

Object Detection on Jetson (Ultralytics YOLO)

This section demonstrates object detection on NVIDIA Jetson using Ultralytics YOLO. It covers detection on images, videos, and real-time camera streams with Jetson performance optimization.


1. Enable Optimal Jetson Performance

Before running inference, configure the Jetson board for maximum performance.

Enable MAX Power Mode

sudo nvpmodel -m 2

Enable Jetson Clocks

sudo jetson_clocks

2. Object Detection on Images

Enter Demo Directory

cd ~/ultralytics/ultralytics/yahboom_demo

Run Image Detection Script

python3 01.detection_image.py

Detection results are saved to:

~/ultralytics/ultralytics/output/

Sample Code (Image Detection)

from ultralytics import YOLO

model = YOLO("yolo11n.pt")
results = model("assets/bus.jpg")

for r in results:
r.show()
r.save(filename="output/bus_output.jpg")

3. Object Detection on Videos

Run Video Detection Script

python3 01.detection_video.py

Output video location:

~/ultralytics/ultralytics/output/

Sample Code (Video Detection)

import cv2
from ultralytics import YOLO

model = YOLO("yolo11n.pt")
cap = cv2.VideoCapture("videos/people_animals.mp4")

width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))

out = cv2.VideoWriter(
"output/people_animals_output.mp4",
cv2.VideoWriter_fourcc(*"mp4v"),
fps,
(width, height)
)

while cap.isOpened():
ret, frame = cap.read()
if not ret:
break

results = model(frame)
annotated = results[0].plot()
out.write(annotated)

cap.release()
out.release()

4. Real-Time Object Detection

USB Camera

python3 02.detection_usb_camera.py

CSI Camera

python3 03.detection_csi_camera.py

5. Best Practices

  • Use Nano models (yolo11n) for real-time inference
  • Prefer CSI cameras for lower latency
  • Always enable MAX power mode
  • Export models to TensorRT for production

Maintained by HemiHex for Jetson-based advanced vision workflows.